Top-Down Parsing



Syntax Analysis

¢ Parser = Syntax analyzer
O Input: sequence of tokens from lexical analysis
O Output: a parse tree of the program
= E.g., AST
U Process:

= Try to derive from a starting symbol to the input string (How?)
= Build the parse tree following the derivation

¢+ Scanner and parser
O Scanner looks at the lower level part of the programming language
= Only the language for the tokens
O Parser looks at the higher lever part of the programming language

= E.g., if statement, functions
= The tokens are abstracted



Recursive Descent Parsing

¢ How to parse
O The easy way: try till it parses

“ Algorithm
d For a non-terminal

= Generally, follow leftmost derivation
* i.e., try to expand the first non-terminal

= When there are more than one production rules for the non-terminal
» Follow a predetermined order (easy for backtracking)
O For the derived terminals
= Compared against input
= Match — advance input, continue
= Not match — backtrack

O Parsing fails if all possible derivations have been tried but still no
match



Recursive Descent Parsing

“ Example
Rulel:S—aSh
Rule2:S—>bSa
Rule3:S—> B
Rule4:B—>DbB
Rule5:B —> ¢

O Parse:aabbb
= HastouseR1l: S=aSh
= AgainhastouseRl:aSbh=aaShb
= Now has to use Rule 2 or 3, follow the order (always R2 first):

e aaSbhb—=aabSabb—aabbSaabb=aabbbSaaabb

 Now cannot use Rule 2 any more: = aabbbBaaabb=aabbbB
aaab b= incorrect, backtrack

= After some backtracking, finally tried
e aSb=aaShb=aabBbb=aabbb= worked



Recursive Descent Parsing

+» Remarks

O Why leftmost derivation
= Generally, input is read from left to right
= Allow matching with input easily after expansion
O Doesn’t work when the grammar is left recursive
ESE+T
To>T*F|F
F— (E) | id | num
= Parse: x +2*y (id + num * id)
= Will repeatedly apply E — E + T = won’t terminate
O Very inefficient
= Since there is a large space to search for

= Need predictive parsing that never backtracks



Predicative Parsing

\/

“* Need to immediately know which rule to apply when
seeing the next input character

O If for every non-terminal X
= We know what would be the first terminal of each X’s production
= And the first terminal of each X’s production is different
O Then
= \When current leftmost non-terminal is X
= And we can look at the next input character

= = We know exactly which production should be used next to
expand X



Predicative Parsing

\/

“* Need to immediately know which rule to apply when
seeing the next input character
O If for every non-terminal X

= We know what would be the first terminal of each X’s production
= And the first terminal of each X’s production is different

d Example

Rulel:SaaSbj

Rule2:S—>DbSa
If next input is a, use R1

Rule3:S—B _ _
A B\ If next input is b, use R2

Rule5:B —¢ But, R3’s first terminal is also b
Won’t work!!!

First terminal is a

First terminal is b




Predicative Parsing

“* Need to immediately know which rule to apply when
seeing the next input character

O If for every non-terminal X
= We know what would be the first terminal of each X’s production
= And the first terminal of each X’s production is different

O What grammar does not satisfy the above?
= If two productions of the same non-terminal have the same first
symbol (N or T), you can see immediately that it won’t work
« S>hbhSalbB
« S—>Ba|BC
= If the grammar is left recursive, then it won’t work
e« S—>Sa|lbB, B—>bB]|c

» The left recursive rule of S can generate all terminals that the other
productions of S can generate

S — b B can generate b, so, S — S a can also generate b



Predicative Parsing

¢ Need to rewrite the grammar
O Left recursion elimination
= This is required even for recursive descent parsing algorithm

O Left factoring
=  Remove the leftmost common factors



Eliminate Left Recursion

¢ A grammar is left recursive
 If it has at least one rule in the form X — Xa

s+ How to eliminate left recursion?

O Simplerule: A— Ao | B

= Derivations will always be: A = Ao = Aoca =* Aaa...o. =
Baa...a

= Rewrite into:
A — BA’
A’ > oA’ e
e A= BA'= BaA’ = BaaA’ =* Baa...0dA’ = PBaa...o€



Eliminate Left Recursion

s+ How to eliminate left recursion?

O Ina general case:
=  Group A’s production rules as follows

A—Aa;|Aay| ... |Acy B Ba] .- | By
* The left recursive ones and the non-left recursive ones

= Rewrite A’s production rules as follows
A= BA [ BA| ... | BA
A -5 oA LA ... |a,A’ | e
« The derived string will always ending up with §; in front
» Followed by any combination of o’s



Eliminate Left Recursion

s+ How to eliminate left recursion
1 Hidden left recursion

S—>Aua|b
A—>AB|Sy|e
¢ Elimination steps
O Index the non-terminals (A, A,, ...) Repeat this till no A; appears in
A’s production rules (for j <1i)

fori:=1tondo --current production
forj:=1toi-1do -- previous non-terminals W

If A; appears in A;’s production, like A; — Ayy, then
A; — 0,7 | 0,y | ... (assume that Aj — 8, | 3, | ... )
eliminate left recursion for A;’s productions
O E.g., when processing A
A — Sy is substituted by A — Aay | by first
then eliminate left recursion for A



Eliminate Left Recursion
* For grammar
ES>E+T|T A= Aa|p=
T>T*F|F A= PA

_ A — oA
F— (E)|1d|num

L)

E— TE’
E’ — +TE’ | &

T—>FT’
T —*FT" |

F— (E)|1d|num
= All start with non-terminals, no left recursion



Left Factoring

“ Given a non-terminal A, represent its rules as:

A—aPyfaf,|... |y
= o Is the longest matching prefix of several A productions
= v is the other productions that does not have leading o
= o should be eliminated to achieve predictive parsing
O Rewrite the production rules

A— oA |y
A > BBl -



Left Factoring

\/

s Grammar

S > ifEthenSelse S A= apl|aB2|..|y=
S > ifEthenS A— oAy
. A BLIB2] ...

¢ Rewrite the rules

S—>ifEthenS S’

S’ —>elseS|e

= Input: if a then if b then s1 else s2

» S=ifEthenSS’ = ifathenSS = ifathenifEthenSS’ S’ =
ifathenifbthenS S’ S’ = ifathenifbthensl S’ S’
e Couldbe: = ifathenif bthenslelses? ¢
e Couldbe: = ifathenif b then sl ¢ else s2

» Left factoring cannot eliminate ambiguity



Eliminate Left Recursion and Left Factoring

\/

 Glven a grammar

O First eliminate left recursion

O Then perform left factoring

O Now, compute “First” -- first terminals of each production

s Grammar —

’ A language can be expressed by an infinite number
E—>TE of grammars
E' > +TE" | ¢ You can rewrite a left recursive grammar into a

, totally different form to make it not left recursive
T—>FT e :

But such grammar rewriting is not left recursion

T">>*FT" | ¢ elimination
F— (E) | id | num Left recursion elimination is this specific process

= No longer left recursive
= No longer have left factors
= Ready to compute first



First(a)

 Firstfa) ={t|a=*1p}
L Consider all possible terminal strings derived from a
O The set of the first terminals of those strings

o Foralltermimnalste T
Q First(t) = {t}



First(a)

¢ For all non-terminals X € N
d If X > ¢ = add ¢ to First(X)

d fFX->oq..q,
= g, Is either a terminal or a non-terminal (not a string as usual)
—

= Add all terminals in First(c.,) to First(X)
 Exclude ¢

= |fe e First(ay) A ... A € € First(a;_,) then
add all terminals in First(o;) to First(X)
= |fe e First(ay) A ... A € € First(a,) then
add ¢ to First(X)

s Apply the rules until nothing more can be added
= Foradding tor €: add only if t is not in the set yet



First(a)

s Grammar
E—>TE’
E’—> +TE’ | ¢
T>FT
T > *FT’ |¢
F— (E)|id|num
s First
First(*) = {*}, First(+) = {+}, ...
First(F) = {(, id, num}
First(T?) = {*, ¢}
First(T) = First(F) = {(, id, num}
First(E’) = {+, €}
First(E) = First(T) = {(, id, num}



First(a)

s Grammar
S—> AB
A—>aAle
B—>DbB|e

s First
First(A) = {a, }
First(B) = {b, &}

First(S) = First(A) ={a, e}—=_ 5 his complete?



First(a)

s Grammar

S—> AB
A — aA
B — bB

o First

First(A) =
First(B) =

B (R1
c (R3
d (R5

{a ¢}
{b, d}

If we see a | If we see b | If we see ¢ | |f we see d
When expanding S| Use R1 Use R2 Use R1 Use R2
When expanding A| Use R3 Use R4
When expanding B Use R5 Use R6

R2)
R4)

R6)

Input: acbd

Expands S, seeing a, use R1: S = AB
Expands A, seeing a, use R3: AB = aAB
Expands A, seeing c, use R4: aAB = acB
Expands B, seeing b, use R5: acB = achB
Expands B, seeing d, use R6: achB = achd

First(S) = First(A) v First(B) = {a, b, c, d}
¢+ Productions

Q First (R1) = {a, c}, First (R2) = {b, d}

Q First (R3) = {a}, First (R4) ={c}

Q First (R5) = {b}, First (R6) ={d}




First(a)

o Grammar
S > AB (R1)

AaAle (R2|R3)
B>bB|e (R4|R5)

“* First
First(A) = {a, €}
First(B) = {b, €}

Ifweseea | Ifweseeb | |fwesees
When expanding S| Use R1 Use R1 Use R1
When expanding A| Use R2 Use R3
When expanding B Use R4 Use R5
Input:aabb
Use R1: S = AB

Expands A, seeing a, use R2: AB = aAB
Expands A, seeing a, use R2: aAB = aaAB
Expands A, seeing b, What to do? Not in table!

First(S) = First(A) u First(B) ={a, b, €}

¢ Productions

d First (R1) ={a, b, €}
4 First (R2) = {a}, First (R3) ={¢&}
d First (R4) = {b}, First (R5) ={¢c}




Follow(a)

» Follow(a) ={t|S=*atp }
L Consider all strings that may follow o
O The set of the first terminals of those strings

s Assumptions
O There is a $ at the end of every input string
O Sis the starting symbol

s For all non-terminals only

Q Add $ into Follow(S)

d If A— oaBp = add First(B) — {} into Follow(B)
d IfA—->aBor

A — aBp and € € First(j3)
= add Follow(A) into Follow(B)



Follow(a)

“* First
First(A) = {a, €}
First(B) = {Db, €}
First(S) = First(A) ={a,
¢ Productions
4 First (R1) ={a, b, €}

4 First (R2) = {a}, Fi

Q First (R4) = {b}, Fi

+» Follow

Q Follow(S) = {$}

Grammar
S—AB (R1)
A—>aAle (R2 | R3)
B—o>bBle (R4|R5)
Ifweseea | Ifweseeb
b, e} When expanding S| Use R1 Use R1
When expanding A| Use R2 ?
When expanding B Use R4
Ifweseea | Ifweseeb | |fywesee$
When expanding S| UseR1 Use R1 Use R1
When expanding A| Use R2 Use R3 Use R3
When expanding B Use R4 Use R5

A Follow(B) = Follow(S) = {$}
A Follow(A) = First(B) w Follow(S) = {b, $}
= Since ¢ € First(B), Follow(S) should be in Follow(A)




Construct a Parse Table

% Construct a parse table M[N, TU{$}]
d Non-terminals in the rows and terminals in the columns

¢ For each production A — o
O For each terminal a € First(a)
= add A —» a to M[A, 3]
= Meaning: When at A and seeing input a, A — o should be used
O If € € First(a) then for each terminal a € Follow(A)

= add A —» a to M[A, 3]

= Meaning: When at A and seeing input a, A — o should be used
* In order to continue expansion to ¢
« X>AC A—->B B-oble C—occ

Q If € € First(a) and $ € Follow(A)

= add A - a to M[A, $]
=  Same as the above



First(a) and Follow(a) — another example

COo0 000000

OO

First(*) = {*} erammar
First(F) = {(, id, num} E’> +TE’ | ¢
First(T’) = {*, ¢} T—>FT
First(T) = First(F) = {(, id, num} =7 e

First(E’) = {+, &} F— (E)|id|num

First(E) = First(T) = {(, id, num}

Follow(E) = {$, )}

Follow(E”) = Follow(E) = {$, )}

Follow(T) ={$, ), +}

= Since we have TE’ from first two rules and E’ can be ¢
= Follow(T) = (First(E’)—{e}) v Follow(E’)
Follow(T’) = Follow(T) = {$, ), +}

Follow(F) = {*, $,), +}

=  Follow(F) = (First(T*)—{e}) w Follow(T")



Construct a Parse Table

Grammar
E—>TE’

E'— +TE’| ¢

T—>FT’

T > *FT’| ¢

F - (E) |id | num

First(*) = {*}
First(F) = {(, id, num}

First(T’) =
First(T) {(,
First(E’) =
First(E) {(,

{* e}

id, num}

{+ ¢}

id, num}

Follow(E) = {$, )}
Follow(E’) = {$, )}
Follow(T) ={$,), +}
Follow(T) ={$, ), +}
Follow(T’) = {$,), +}
Follow(F) = {*, §,), +}

E—TE: E'>E T FT: FT" > T’ - & Follow(T") = {$,), +}

id num + ( ) $
E[E>TE | ESTE E>TE P
E E' > +TE’. E e | Eoe
I TSFT | To>FT T FT D
r Sy == TS | Toss
F F—id | F—num F— (E)




Predictive Parsing

L)

“* Now we can have a predictive parsing mechanism
O Use a stack to keep track of the expanded form
O Initialization
= Put starting symbol S and $ into the stack
= Add $ to the end of the input string
= $is for the recognition of the termination configuration
O If ais at the top of the stack and a is the next input symbol then
= Simply pop a from stack and advance on the input string
O If Aison top of the stack and a is the next input symbol then
= Assume that M[A,a] = A - «
= Replace A by a in the stack
O Termination
= When only $ in the stack and in the input string
O If Ais on top of the stack and a is the next input but

= MI[A 3] = emptyﬁ




Stack Input Action
Pop F from stack E$ id+num*id$ |E>STE’
Remove id from input TE'$ id+num*id$s | T—FT’
FT'E'S$ id+num*id$ |F—id
Pop T’ from stack
Input unchanged — |T'E'$ +num*id3 T'—>e
E’S$ +num*id $ E’—> +TE’
+TE’: Only TE” in stack i>*T E'$ num * id $ T FT
FEMGYE 7 L 7L FT'E'$ num*id $ F — num
TES$ *id$ T > *FT’
FT'E'S$ id$ F—id
TES$ $ T —>¢
E’$ $ E'’>¢
id num * + ( ) $
E|E—>TE | E>TE E—>TE’
E’ E’—> +TE’ E’—>¢ E’—>¢
T | T>FT" | T>FT’ T—>FT’
T T >*FT" | T —>e¢ T > ¢ T > ¢
F F—id | F—num F— (E)




Build the Parse Tree

¢+ For each non-terminal in the stack
O Keep a pointer to its location in the parse tree
¢ Initialization

O After putting S in stack, create T(S) as the root of the tree and let S
points to T(S)

» At each expansion of X - a
U Create child nodes of T(X) for all terminals and nonterminals in o,

O For each non-terminals added, let it point back to its corresponding
tree node (when expanding, knowing where the node is in the tree)

¢ Termination
O When the parsing terminates, the tree is built



LL(1) Grammar

¢+ The predictive parsing we had is LL(1) parsing
O First L: scanning input from left to right
O Second L: Leftmost derivation
O 1: lookahead 1 input character

O Similar to recursive descent
= But use table to determine which production to use
= Use stack to keep track of pending non-terminals



LL(1) Grammar

“* Requirements for LL(1) grammar

JA-> oo, ...

4 Foralli, j, 1], First(oy) M First(oy) = ¢
" A>Bl|a B—ab
= First of A— B and A — a both has a
= Expanding A, seeing input a, can’t know which rule to use

U If o; = ¢, then, for all J, 1 = J, First(a;) N Follow(A) = ¢
» S>AB, A—>aclg, B—a
= First of A — ac and Follow(A) both has a
= \When seeing a while expanding A, not suretouse A —»>acorA — ¢



More about LL Grammar

“* What grammar is not LL(1)?

O Left recursive
" A>Aa |
» First(B) < First(A)

e Two production rules of A: A — Aa and A — 3 have the same terminals
In their “First” sets (or A — Aa has a super set)

O Grammar that is not left factored
= Two productions with the same left symbols have the same First set

» A —> af | ad = both rules will get into M[Af]
o fisany terminal in First(o)



More about LL Grammar

“* What grammar is not LL(1)?
S—>A|B
A —aaA|¢
B — abB | b

a

S—>A
S—>B

S—>B

S—>A

A

A — aaA

A—c¢

B

B — abB

B—o>b

= First(A) = {a, &}, First(B) = {a, b}, First(S) = {a, b, ¢}
= Follow(S) = {$}, Follow(A) = {$}, Follow(B) = {$}

O But this grammar is LL(2)

= |f we lookahead 2 input characters, predictive parsing is possible
= First,(A) = {aa, €}, First,(B) = {ab, b$}, First,(S) = {aa, ab, b$, €}

aa ab b$ $ ba, bb, a$
S S—>A S—>B S—>B S—>A
A |A—>aA A—eg
B B—>abB| B—b




More about LL Grammar

a $
“* What grammar is not LL(1)? S |S—AB S—>AB
S 5 AB A| A—ab
A—>ab|e B ;\:z
B—a

= First(B) = {a}, First(A) = {a, €}, First(S) = {a, &}
= Follow(S) = {$}, Follow(B) = {$}, Follow(A) = {a}
O But this grammar is also LL(2)
= First,(B) = {a$}, First,(A) = {ab, €}, First,(S) = {ab, a$}

a$ ab $
S>AB | S—>AB
A A—>¢ A —ab

B—a

w

9y




More about LL Grammar

LL(2) Parsing Example

S—>AB
A—abA|e
B—>aB|e

First,(A) = {ab, €}
First,(B) = {aa, a$, ¢}
First,(S) = {ab, aa, a$, ¢}

Follow,(S) = {$}
Follow,(B) = {$}
Follow,(A) = {aa, a$, $}

Input: abaaa

a$ aa ab $
S|S>AB|S—>AB|S—>AB|S—>AB
Al A>e | A>e |[A—>abA| A—> ¢
B|B—>aB|B—>aB Boe
Stack Input Action
S$ abaaa$ S—AB
ABS$ abaaa$ A — abA
ABS$ aaa$ A—>ce
B$ aaad B — aB
B3 aa$ B — aB
B3 a$ B—aB
B$ $ B¢
$ $




LL(k) Grammar

“ LL(K) parsing
O Allow to lookahead k input characters

O Can extend LL(1) parsing method to LL(k) parsing
= Build parsing table based on first k terminals — First,(X)

aaa aa$ a$
¢ What grammar is not LL(k)? s | suoA | soA | soB
S—>A|B S—B
A 5 aaA | aa A | A—aaA A—aa
B — 3aB | a 0] B—aaB B—a

= Even number of a’s = parse with A production rule

» Odd number of a’s = parse with B production rule

= Need to continue to lookahead till the end of the input string

= Firsty(B) = {aaa, a$}, First;(A) = {aaa, aa$}, Firsty(S) = {aaa, aa$, a$}



LL(k) Grammar

“* What grammar is not LL(k)?

S—>A|B
A — aaA | aa
B—aaB|a
+ Can something be done? Rewrite the grammar

S—>aaS|E|O aaa aa$ a$
E — aa S | ssasS | SoE | S50
O—a E—aa

0 Becomes LL(3) 0 O—sa

Q Firsty(E) = {aa$}, Firsty(0O) = {a$}, Firsty(S) = {aaa, aa$, a$}



LL(k) Grammar

“* What grammar is not LL(k)?
O Ambiguous grammars
S—ifEthenSelse S
S—>ifEthenS



LL(k) Grammar

¢ About LL(k) language

O A language is LL(k) if there exists an LL(K) grammar for it

O Check whether a grammar is LL(K)
= |f given an arbitrary k
= Always can find the same First, substring for two X-productions
= Then the grammar is not LL(k)

O There are CFGs that are not LL(K)
S—>A|B
A — aAa | aa
B —>aBb|ab

= No matter how big the k is, one can always find more than k aaa...a
in the firstsetof S—> Aand S — B

= This is true for the language itself



LL(k) Grammar

¢ How about LL(0)?
O Only one rule to use, no lookahead needed
O Subsequently, only one word in the language



Top-Down Parsing -- Summary

¢+ Top down parsing

O Recursive descent parsing

O Making it a predictive parsing algorithm
= Left recursion elimination
= Left factoring

O LL parsing
= First set and Follow set
= Parse table construction
= Parsing procedure

O LL grammars and languages
= LL(1) grammar
= LL(K) grammar



