
Top-Down ParsingTop-Down Parsing



Syntax AnalysisSyntax Analysis

Parser = Syntax analyzer
Input: sequence of tokens from lexical analysisInput: sequence of tokens from lexical analysis
Output: a parse tree of the program 

E.g., AST
PProcess:

Try to derive from a starting symbol to the input string (How?)
Build the parse tree following the derivation

Scanner and parser
Scanner looks at the lower level part of the programming language

Only the language for the tokensy g g
Parser looks at the higher lever part of the programming language

E.g., if statement, functions
The tokens are abstractedThe tokens are abstracted



Recursive Descent ParsingRecursive Descent Parsing

How to parse
The easy way: try till it parsesThe easy way: try till it parses

Algorithm
For a non-terminal 

Generally, follow leftmost derivation
• i.e., try to expand the first non-terminal

When there are more than one production rules for the non-terminal
• Follow a predetermined order (easy for backtracking)

For the derived terminals
Compared against input
Match – advance input, continue
Not match – backtrack 

Parsing fails if all possible derivations have been tried but still no 
match



Recursive Descent ParsingRecursive Descent Parsing

Example
Rule 1: S → a S bRule 1: S → a S b 
Rule 2: S → b S a 
Rule 3: S → B
Rule 4: B → b B 
Rule 5: B → ε

Parse: a a b b b
Has to use R1: S ⇒ a S b
Again has to use R1: a S b ⇒ a a S b b
Now has to use Rule 2 or 3, follow the order (always R2 first): 

• a a S b b ⇒ a a b S a b b ⇒ a a b b S a a b b ⇒ a a b b b S a a a b b
• Now cannot use Rule 2 any more: ⇒ a a b b b B a a a b b ⇒ a a b b b B 

a a a b b ⇒ incorrect, backtrack
After some backtracking, finally tried

• a S b ⇒ a a S b b ⇒ a a b B b b ⇒ a a b b b ⇒ worked• a S b ⇒ a a S b b ⇒ a a b B b b ⇒ a a b b b ⇒ worked



Recursive Descent ParsingRecursive Descent Parsing

Remarks
Why leftmost derivationWhy leftmost derivation

Generally, input is read from left to right
Allow matching with input easily after expansion

Doesn’t work when the grammar is left recursiveDoesn’t work when the grammar is left recursive
E → E + T
T → T * F | F
F → (E) | id | numF → (E) | id | num

Parse: x + 2 * y (id + num * id)
Will repeatedly apply E → E + T ⇒ won’t terminate

Very inefficientVery inefficient
Since there is a large space to search for

⇒ Need predictive parsing that never backtracks



Predicative ParsingPredicative Parsing

Need to immediately know which rule to apply when 
seeing the next input characterseeing the next input character

If for every non-terminal X
We know what would be the first terminal of each X’s production
A d th fi t t i l f h X’ d ti i diff tAnd the first terminal of each X’s production is different

Then
When current leftmost non-terminal is X
And we can look at the next input character
⇒ We know exactly which production should be used next to 
expand X



Predicative ParsingPredicative Parsing

Need to immediately know which rule to apply when 
seeing the next input characterseeing the next input character

If for every non-terminal X
We know what would be the first terminal of each X’s production
A d th fi t t i l f h X’ d ti i diff tAnd the first terminal of each X’s production is different

Example
Rule 1: S → a S b 
R l 2 S → b S

First terminal is a
First terminal is b

Rule 2: S → b S a 
Rule 3: S → B
Rule 4: B → b B 
Rule 5: B → ε

If next input is a, use R1
If next input is b, use R2

But R3’s first terminal is also bBut, R3 s first terminal is also b
Won’t work!!!



Predicative ParsingPredicative Parsing

Need to immediately know which rule to apply when 
seeing the next input characterseeing the next input character

If for every non-terminal X
We know what would be the first terminal of each X’s production
A d th fi t t i l f h X’ d ti i diff tAnd the first terminal of each X’s production is different

What grammar does not satisfy the above?
If two productions of the same non-terminal have the same first 

b l (N T) i di t l th t it ’t ksymbol (N or T), you can see immediately that it won’t work
• S → b S a | b B 
• S → B a | B C

If the grammar is left recursive then it won’t workIf the grammar is left recursive, then it won t work
• S → S a | b B,  B → b B | c
• The left recursive rule of S can generate all terminals that the other 

productions of S can generate
- S → b B can generate b, so, S → S a can also generate b



Predicative ParsingPredicative Parsing

Need to rewrite the grammar 
Left recursion eliminationLeft recursion elimination

This is required even for recursive descent parsing algorithm
Left factoring

R th l ft t f tRemove the leftmost common factors



Eliminate Left RecursionEliminate Left Recursion

A grammar is left recursive 
If it has at least one rule in the form X → XαIf it has at least one rule in the form X → Xα

How to eliminate left recursion?
Simple rule: A → Aα | β

Derivations will always be: A ⇒ Aα ⇒ Aαα ⇒* Aαα…α ⇒
βαα…α
Rewrite into:
A → βA’
A’ → αA’ | ε

• A ⇒ βA’ ⇒ βαA’ ⇒ βααA’ ⇒* βαα…αA’ ⇒ βαα…αε



Eliminate Left RecursionEliminate Left Recursion

How to eliminate left recursion?
In a general case:In a general case:

Group A’s production rules as follows
A → Aα1 | Aα2 | … | Aαm | β1 | β2 | … | βn

• The left recursive ones and the non-left recursive ones• The left recursive ones and the non-left recursive ones
Rewrite A’s production rules as follows
A → β1A’ | β2A’ | … | βnA’ 
A’ → α A’ | α A’ | | α A’ | εA → α1A  | α2A  | … | αmA  | ε

• The derived string will always ending up with βi in front
• Followed by any combination of αi’s



Eliminate Left RecursionEliminate Left Recursion

How to eliminate left recursion
Hidden left recursionHidden left recursion
S → Aα | b
A → Aβ | Sγ | ε

Eli i ti tElimination steps
Index the non-terminals (A1, A2, …)
for i := 1 to n do -- current production 

Repeat this till no Aj appears in 
Ai’s production rules (for j < i)

for j := 1 to i – 1 do -- previous non-terminals
if Aj appears in Ai’s production, like Ai → Ajγ, then
Ai → δ1γ | δ2γ | … (assume that Aj → δ1 | δ2 | … )j

eliminate left recursion for Ai’s productions
E.g., when processing A
A → Sγ is substituted by A → Aαγ | bγ firstγ y γ | γ
then eliminate left recursion for A



Eliminate Left RecursionEliminate Left Recursion

For grammar
E → E + T | T A → Aα | β ⇒E → E + T | T
T → T * F | F
F → (E) | id | num

E

| β
A → βA’ 
A’ → αA’

E
E → TE’
E’ → +TE’ | ε

T
T → FT’
T’ → *FT’ | ε

F
F → (E) | id | num

All start with non terminals no left recursionAll start with non-terminals, no left recursion



Left FactoringLeft Factoring

Given a non-terminal A, represent its rules as:
A → αβ | αβ | | γA → αβ1 | αβ2 | … | γ

α is the longest matching prefix of several A productions
γ is the other productions that does not have leading α
α should be eliminated to achieve predictive parsingα should be eliminated to achieve predictive parsing

Rewrite the production rules
A → αA’ | γ
A’ → β1 | β2 | …



Left FactoringLeft Factoring

Grammar
S → if E then S else S A → αβ1 | αβ2 | … | γ ⇒S → if E then S else S
S → if E then S

Rewrite the rules
S if h S S’

→ αβ | αβ | … | γ ⇒
A → αA’ | γ
A’ → β1 | β2 | …

S → if E then S S’
S’ → else S | ε

Input: if a then if b then s1 else s2
S ⇒ if E then S S’ ⇒ if a then S S’ ⇒ if a then if E then S S’ S’ ⇒
if a then if b then S S’ S’ ⇒ if a then if b then s1 S’ S’

• Could be: ⇒ if a then if b then s1 else s2 ε
• Could be: ⇒ if a then if b then s1 ε else s2• Could be: ⇒ if a then if b then s1 ε else s2

Left factoring cannot eliminate ambiguity



Eliminate Left Recursion and Left FactoringEliminate Left Recursion and Left Factoring

Given a grammar
First eliminate left recursionFirst eliminate left recursion
Then perform left factoring
Now, compute “First” -- first terminals of each production

Grammar
E → TE’
E’ → +TE’ | ε

A language can be expressed by an infinite number 
of grammars 
You can rewrite a left recursive grammar into a

T → FT’
T’ → *FT’ | ε
F → (E) | id | num

totally different form to make it not left recursive
But such grammar rewriting is not left recursion 
elimination
Left recursion elimination is this specific process

No longer left recursive
No longer have left factors
Ready to compute firsty p



First(α)First(α)

First(α) = { t | α ⇒* tβ }
Consider all possible terminal strings derived from αConsider all possible terminal strings derived from α
The set of the first terminals of those strings

For all terminals t ∈ T
First(t) = {t}



First(α)First(α)

For all non-terminals X ∈ N 
If X → ε ⇒ add ε to First(X)If X → ε ⇒ add ε to First(X)
If X → α1 α2 … αn

αi is either a terminal or a non-terminal (not a string as usual)
⇒

Add all terminals in First(α1) to First(X)
• Exclude ε

If Fi t( ) Fi t( ) thIf ε ∈ First(α1) ∧ … ∧ ε ∈ First(αi-1) then
add all terminals in First(αi) to First(X)

If ε ∈ First(α1) ∧ … ∧ ε ∈ First(αn) then
dd t Fi t(X)add ε to First(X)

Apply the rules until nothing more can be added
For adding t or ε: add only if t is not in the set yet



First(α)First(α)

Grammar
E → TE’E → TE
E’ → +TE’ | ε
T → FT’
T’ → *FT’ | ε
F → (E) | id | num

Firsts
First(*) = {*}, First(+) = {+}, …
First(F) = {(, id, num}
Fi t(T’) {* }First(T’) = {*, ε}
First(T) = First(F) = {(, id, num}
First(E’) = {+, ε}
First(E) = First(T) = {(, id, num}



First(α)First(α)

Grammar
S → ABS → AB
A → aA | ε
B → bB | ε

First
First(A) = {a, ε}
First(B) = {b, ε}First(B)  {b, ε}
First(S) = First(A) ={a, ε} Is this complete?



First(α)
If we see a If we see b If we see c If we see d 

When expanding S Use R1 Use R2 Use R1 Use R2First(α)

Grammar
S → AB | B (R1 | R2)

p g

When expanding A Use R3 - Use R4 -

When expanding B - Use R5 - Use R6

S → AB | B (R1 | R2)
A → aA | c (R3 | R4)
B → bB | d (R5 | R6)

Input: acbd
Expands S, seeing a, use R1: S ⇒ AB
Expands A, seeing a, use R3: AB ⇒ aAB
Expands A, seeing c, use R4: aAB ⇒ acB

First
First(A) = {a, c}
First(B) = {b, d}

Expands A, seeing c, use R4: aAB ⇒ acB
Expands B, seeing b, use R5: acB ⇒ acbB
Expands B, seeing d, use R6: acbB ⇒ acbd

First(B)  {b, d}
First(S) = First(A) ∪ First(B) = {a, b, c, d}

Productions
First (R1) = {a, c},  First (R2) = {b, d}
First (R3) = {a},  First (R4) = {c}
First (R5) = {b},  First (R6) = {d}( ) { } ( ) { }



First(α)
If we see a If we see b If we see ε

When expanding S Use R1 Use R1 Use R1First(α)

Grammar
S → AB (R1)

When expanding S Use R1 Use R1 Use R1

When expanding A Use R2 - Use R3

When expanding B - Use R4 Use R5
S → AB (R1)
A → aA | ε (R2 | R3)
B → bB | ε (R4 | R5)

Input: aabb
Use R1: S ⇒ AB
Expands A, seeing a, use R2: AB ⇒ aAB
Expands A seeing a use R2: aAB ⇒ aaABFirst

First(A) = {a, ε}
First(B) = {b, ε}

Expands A, seeing a, use R2: aAB ⇒ aaAB
Expands A, seeing b, What to do? Not in table!

First(B)  {b, ε}
First(S) = First(A) ∪ First(B) ={a, b, ε}

Productions
First (R1) = {a, b, ε}
First (R2) = {a},  First (R3) = {ε}
First (R4) = {b},  First (R5) = {ε}( ) { } ( ) { }



Follow(α)Follow(α)

Follow(α) = { t | S ⇒* αtβ }
Consider all strings that may follow αConsider all strings that may follow α
The set of the first terminals of those strings 

Assumptions
There is a $ at the end of every input string
S is the starting symbol

For all non-terminals onlyFor all non-terminals only
Add $ into Follow(S)
If A → αBβ ⇒ add First(β) – {ε} into Follow(B)
If A → αB or

A → αBβ and ε ∈ First(β)
⇒ add Follow(A) into Follow(B)



Follow(α)Follow(α)

First
First(A) = {a ε}

Grammar
S → AB (R1)
A → aA | ε (R2 | R3)
B → bB | ε (R4 | R5)First(A) = {a, ε}

First(B) = {b, ε}
First(S) = First(A) ={a, b, ε}

If we see a If we see b

When expanding S Use R1 Use R1

Productions
First (R1) = {a, b, ε}
First (R2) = {a}, First (R3) = {ε}

When expanding A Use R2 ?

When expanding B - Use R4

If we see a If we see b If we see $First (R2)  {a},  First (R3)  {ε}
First (R4) = {b},  First (R5) = {ε}

Follow

If we see $
When expanding S Use R1 Use R1 Use R1

When expanding A Use R2 Use R3 Use R3

When expanding B Use R4 Use R5Follow(S) = {$}
Follow(B) = Follow(S) = {$}
Follow(A) = First(B) ∪ Follow(S) = {b, $}

When expanding B - Use R4 Use R5

( ) ( ) ( ) { }
Since ε ∈ First(B), Follow(S) should be in Follow(A)



Construct a Parse TableConstruct a Parse Table

Construct a parse table M[N, T∪{$}]
Non-terminals in the rows and terminals in the columnsNon-terminals in the rows and terminals in the columns

For each production A → α
For each terminal a ∈ First(α)
⇒ add A → α to M[A, a]

Meaning: When at A and seeing input a, A → α should be used
If  ε ∈ First(α) then for each terminal a ∈ Follow(A)( ) ( )
⇒ add A → α to M[A, a]

Meaning: When at A and seeing input a, A → α should be used 
• In order to continue expansion to εp
• X → AC     A → B     B → b | ε C → cc

If  ε ∈ First(α) and $ ∈ Follow(A)
⇒ add A → α to M[A $]⇒ add A → α to M[A, $]

Same as the above



First(α) and Follow(α) – another exampleFirst(α) and Follow(α) another example
First(*) = {*}
First(F) = {(, id, num}

Grammar
E → TE’
E’ → +TE’ | ε

First(T’) = {*, ε}
First(T) = First(F) = {(, id, num}
First(E’) = {+, ε}

|
T → FT’
T’ → *FT’ | ε
F → (E) | id | num( ) { , }

First(E) = First(T) = {(, id, num}

Follow(E) = {$, )}
Follow(E’) = Follow(E) = {$, )}
Follow(T) = {$, ), +}

Since we have TE’ from first two rules and E’ can be ε
Follow(T) = (First(E’)–{ε}) ∪ Follow(E’)

Follow(T’) = Follow(T) = {$, ), +}
Follow(F) = {*, $, ), +}

Follow(F) = (First(T’)–{ε}) ∪ Follow(T’)



Construct a Parse TableConstruct a Parse Table

Grammar First(*) = {*} Follow(E) = {$, )}
$E → TE’

E’ → +TE’ | ε
T → FT’
T’ → *FT’ | ε

First(F) = {(, id, num}
First(T’) = {*, ε}
First(T) {(, id, num}
First(E’) = {+, ε}

Follow(E’) = {$, )}
Follow(T) = {$, ), +}
Follow(T) = {$, ), +}
Follow(T’) = {$, ), +}T  → FT  | ε

F → (E) | id | num
First(E )  { , ε}
First(E) {(, id, num}

Follow(T )  {$, ), }
Follow(F) = {*, $, ), +}

E → TE’: First(TE’) = {(, id, num}E’ → +TE’: First(+TE’) = {+}E’ → ε: Follow(E’) = {$,)}T → FT’: First(FT’) = {(, id, num}T’ → *FT’: First(*FT’) = {*}T’ → ε: Follow(T’) = {$, ), +}

id num * + ( ) $

E E → TE’ E → TE’ E → TE’

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ T → FT’ T → FT’

T’ T’ → *FT’ T’ → ε T’ → ε T’ → ε

F F → id F → num F → (E)F F → id F → num F → (E)



Predictive ParsingPredictive Parsing

Now we can have a predictive parsing mechanism
Use a stack to keep track of the expanded formUse a s ac o eep ac o e e pa ded o
Initialization

Put starting symbol S and $ into the stack
Add $ to the end of the input string p g
$ is for the recognition of the termination configuration

If a is at the top of the stack and a is the next input symbol then
Simply pop a from stack and advance on the input string

If A is on top of the stack and a is the next input symbol then
Assume that M[A, a] = A → α
Replace A by α in the stack

Termination
When only $ in the stack and in the input string

If A is on top of the stack and a is the next input but
M[A, a] = empty Error! 



Stack Input Action

E $ id + * id $ E TE’P F f t k E $ id + num * id $ E→TE’

T E’ $ id + num * id $ T→ FT’

F T’ E’ $ id + num * id $ F → id

$ * id $

Pop F from stack
Remove id from input

Pop T’ from stack
T’ E’ $ + num * id $ T’ → ε

E’ $ + num * id $ E’ → +TE’

T E’ $ num * id $ T→ FT’+TE’: Only TE’ in stack
Remove + from input

p
Input unchanged

F T’ E’ $ num * id $ F → num

T’ E’ $ * id $ T’ → *FT’

F T’ E’ $ id $ F → id

Remove + from input

T’ E’ $ $ T’ → ε

E’ $ $ E’ → ε

$ $ Acceptid num * + ( ) $

E E → TE’ E → TE’ E → TE’

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ T → FT’ T → FT’

T’ T’ → *FT’ T’ → ε T’ → ε T’ → ε

F F → id F → num F → (E)



Build the Parse TreeBuild the Parse Tree

For each non-terminal in the stack
Keep a pointer to its location in the parse treeKeep a pointer to its location in the parse tree

Initialization
After putting S in stack, create T(S) as the root of the tree and let S 
points to T(S)

At each expansion of X → α
Create child nodes of T(X) for all terminals and nonterminals in αCreate child nodes of T(X) for all terminals and nonterminals in α
For each non-terminals added, let it point back to its corresponding 
tree node (when expanding, knowing where the node is in the tree)

TerminationTermination
When the parsing terminates, the tree is built



LL(1) GrammarLL(1) Grammar

The predictive parsing we had is LL(1) parsing
First L: scanning input from left to rightFirst L: scanning input from left to right
Second L: Leftmost derivation
1: lookahead 1 input character
Similar to recursive descent

But use table to determine which production to use 
Use stack to keep track of pending non-terminals 



LL(1) GrammarLL(1) Grammar

Requirements for LL(1) grammar
A → α | α |A → α1 | α2 | … 
For all i, j, i ≠ j, First(αi) ∩ First(αj) = φ

A → B | a,  B → ab
Fi t f A B d A b th hFirst of A → B and A → a both has a
Expanding A, seeing input a, can’t know which rule to use

If αi = ε, then, for all j, i ≠ j, First(αj) ∩ Follow(A) = φ
S → AB,  A → ac | ε,  B → a
First of A → ac and Follow(A) both has a 
When seeing a while expanding A, not sure to use A → ac or A → ε



More about LL GrammarMore about LL Grammar

What grammar is not LL(1)?
Left recursiveLeft recursive

A → Aα | β
• First(β) ⊆ First(A)
• Two production rules of A: A → Aα and A → β have the same terminalsTwo production rules of A: A → Aα and A → β have the same terminals 

in their “First” sets (or A → Aα has a super set)

Grammar that is not left factored
Two productions with the same left symbols have the same First setp y
A → αβ | αδ ⇒ both rules will get into M[A,f]

• f is any terminal in First(α)



More about LL GrammarMore about LL Grammar

What grammar is not LL(1)?
S → A | B

a b $

S S → A
S → B

S → B S → A

S → A | B
A → aaA | ε
B → abB | b

i (A) { } i ( ) { b} i (S) { b }

A A → aaA A → ε

B B → abB B → b

First(A) = {a, ε}, First(B) = {a, b}, First(S) = {a, b, ε}
Follow(S) = {$}, Follow(A) = {$}, Follow(B) = {$}

But this grammar is LL(2)
If we lookahead 2 input characters, predictive parsing is possible
First2(A) = {aa, ε}, First2(B) = {ab, b$}, First2(S) = {aa, ab, b$, ε}

b b$ $ b bb $aa ab b$ $ ba, bb, a$

S S → A S → B S → B S → A

A A → aaA A → ε

B b bB B → abB B → b



More about LL GrammarMore about LL Grammar

What grammar is not LL(1)?
S → AB

a b $

S S → AB S → AB

A A → abS → AB
A → ab | ε
B → a

i ( ) { } i (A) { } i (S) { }

A → ε

B B → a

First(B) = {a}, First(A) = {a, ε}, First(S) = {a, ε}
Follow(S) = {$}, Follow(B) = {$}, Follow(A) = {a}

But this grammar is also LL(2)
First2(B) = {a$}, First2(A) = {ab, ε}, First2(S) = {ab, a$}

a$ ab $ …

S S → AB S → AB

A A → ε A → ab

B B → a



More about LL GrammarMore about LL Grammar
a$ aa ab $

S S → AB S → AB S → AB S → ABLL(2) Parsing Example
A A → ε A → ε A → abA A → ε

B B → aB B → aB B → ε
S → AB
A → abA | ε
B → aB | ε

Stack Input Action

S $ abaaa$ S → AB

A B $ abaaa$ A → abA

|

First2(A) = {ab, ε}
First2(B) = {aa, a$, ε}
First2(S) = {ab, aa, a$, ε} A B $ abaaa$ A → abA

A B $ aaa$ A → ε

B $ aaa$ B → aB

B $ aa$ B → aB

2( ) { }

Follow2(S) = {$}
Follow2(B) = {$}
Follow2(A) = {aa, a$, $} B $ aa$ B → aB

B $ a$ B → aB

B $ $ B → ε

$ $

2

Input: abaaa

$ $



LL(k) GrammarLL(k) Grammar

LL(k) parsing
Allow to lookahead k input charactersAllow to lookahead k input characters
Can extend LL(1) parsing method to LL(k) parsing

Build parsing table based on first k terminals – Firstk(X)

What grammar is not LL(k)?
S → A | B

aaa aa$ a$

S S→A
S→B

S→A S→B
S → A | B
A → aaA | aa
B → aaB | a

E b f ’ ith A d ti l

S→B

A A→aaA A→aa

O B→aaB B→a

Even number of a’s ⇒ parse with A production rule
Odd number of a’s ⇒ parse with B production rule
Need to continue to lookahead till the end of the input string
Fi (B) { $} Fi (A) { $} Fi (S) { $ $}First3(B) = {aaa, a$}, First3(A) = {aaa, aa$}, First3(S) = {aaa, aa$, a$}



LL(k) GrammarLL(k) Grammar

What grammar is not LL(k)?
S → A | BS → A | B
A → aaA | aa
B → aaB | a

Can something be done? Rewrite the grammar
S → aaS | E | O
E → aa

aaa aa$ a$

S S S S E S OE → aa
O → a
Becomes LL(3)

S S→aaS S→E S→O

E E→aa

O O→a

First3(E) = {aa$}, First3(O) = {a$}, First3(S) = {aaa, aa$, a$}



LL(k) GrammarLL(k) Grammar

What grammar is not LL(k)?
Ambiguous grammarsAmbiguous grammars
S → if E then S else S
S → if E then S



LL(k) GrammarLL(k) Grammar

About LL(k) language
A language is LL(k) if there exists an LL(k) grammar for itA language is LL(k) if there exists an LL(k) grammar for it
Check whether a grammar is LL(k)

If given an arbitrary k
Al fi d th Fi t b t i f t X d tiAlways can find the same Firstk substring for two X-productions
Then the grammar is not LL(k)

There are CFGs that are not LL(k)
S → A | B
A → aAa | aa
B → aBb | ab

No matter how big the k is, one can always find more than k aaa…a 
in the first set of S → A and S → B
This is true for the language itself



LL(k) GrammarLL(k) Grammar

How about LL(0)?
Only one rule to use no lookahead neededOnly one rule to use, no lookahead needed
Subsequently, only one word in the language



Top-Down Parsing -- SummaryTop Down Parsing Summary

Top down parsing
Recursive descent parsingRecursive descent parsing
Making it a predictive parsing algorithm

Left recursion elimination
L ft f t iLeft factoring

LL parsing
First set and Follow set
Parse table construction
Parsing procedure

LL grammars and languages
LL(1) grammar
LL(k) grammar


